Selen Dar

Muscle-Building Workout and Diet

We know from the last video that
if we have a high calcium ion concentration inside of the
muscle cell, those calcium ions will bond to the troponin
proteins which will then change their shape in such a way
that the tropomyosin will be moved out of the way and so
then the myosin heads can crawl along the actin filaments
and them we’ll actually have muscle
contractions. So high calcium concentration,
or calcium ion concentration, we have contraction. Low calcium ion concentration,
these troponin proteins go to their standard confirmation and
they pull– or you can say they move the tropomyosin back
in the way of the myosin heads– and we have
no contraction. So the next obvious question
is, how does the muscle regulate whether we have high
calcium concentration and contraction or low calcium
concentration and relaxation? Or even a better question
is, how does the nervous system do it? How does the nervous system tell
the muscle to contract, to make its calcium
concentration high and contract or to make it
low again and relax? And to understand that, let’s
do a little bit a review of what we learned on the
videos on neurons. Let me draw the terminal
junction of an axon right here. Instead of having a synapse
with a dendrite of another neuron, it’s going to have
a synapse with an actual muscle cell. So this is its synapse with
the actual muscle cell. This is a synapse with an
actual muscle cell. Let me label everything just
so you don’t get confused. This is the axon. We could call it the terminal
end of an axon. This is the synapse. Just a little terminology from
the neuron videos– this space was a synaptic cleft. This is the presynaptic
neuron. This is– I guess you could
kind of view it– the post-synaptic cell. It’s not a neuron
in this case. And then just so we
have– this is our membrane of muscle cell. And I’m going to do– probably
the next video or maybe a video after that, I’ll actually
show you the anatomy of a muscle cell. In this, it’ll be a little
abstract because we really want to understand how
the calcium ion concentration is regulated. This is called a sarcolemma. So this is the membrane
of the muscle cell. And this right here– you could
imagine it’s just a fold into the membrane of
the muscle cell. If I were to look at the surface
of the muscle cell, then it would look like a little
bit of a hole or an indentation that goes into the
cell, but here we did a cross section so you can imagine it
folding in, but if you poked it in with a needle or
something, this is what you would get. You would get a fold
in the membrane. And this right here is
called a T-tubule. And the T just stands
for transverse. It’s going transverse to the
surface of the membrane. And over here– and this is the
really important thing in this video, or the
really important organelle in this video. You have this organelle inside
of the muscle cell called the sarcoplasmic reticulum. And it actually is very similar
to an endoplasmic reticulum in somewhat of what
it is or maybe how it’s related to an endoplasmic
reiticulum– but here its main function is storage. While an endoplasmic reticulum,
it’s involved in protein development and it has
ribosomes attached to it, but this is purely a storage
organelle. What the sarcoplasmic reticulum
does it has calcium ion pumps on its membrane and
what these do is they’re ATP ases, which means that they
use ATP to fuel the pump. So you have ATP come in, ATP
attaches to it, and maybe a calcium ion will attach to it,
and when the ATP hydrolyzes into ADP plus a phosphate
group, that changes the confirmation of this protein
and it pumps the calcium ion in. So the calcium ions
get pumped in. So the net effect of all of
these calcium ion pumps on the membrane of the sarcoplasmic
reticulum is in a resting muscle, we’ll have a very high
concentration of calcium ions on the inside. Now, I think you could
probably guess where this is going. When the muscle needs to
contract, these calcium ions get dumped out into the
cytoplasm of the cell. And then they’re able to bond
to the troponin right here, and do everything we talked
about in the last video. So what we care about is, just
how does it know when to dump its calcium ions into the
rest of the cell? This is the inside
of the cell. And so this area is what the
actin filaments and the myosin heads and all of the rest,
and the troponin, and the tropomyosin– they’re all
exposed to the environment that is over here. So you can imagine– I could
just draw it here just to make it clear. I’m drawing it very abstract. We’ll see more of the structure
in a future video. This is a very abstract drawing,
but I think this’ll give you a sense of
what’s going on. So let’s say this neuron– and
we’ll call this a motor neuron– it’s signaling for
a muscle contraction. So first of all, we know how
signals travel across neurons, especially across axons with
an action potential. We could have a sodium
channel right here. It’s voltage gated so you have
a little bit of a positive voltage there. That tells this voltage gated
sodium channel to open up. So it opens up and allows even
more of the sodium to flow in. That makes it a little bit
more positive here. So then that triggers the next
voltage gated channel to open up– and so it keeps traveling
down the membrane of the axon– and eventually, when you
get enough of a positive threshold, voltage gated calcium
channels open up. This is all a review
of what we learned in the neuron videos. So eventually, when it gets
positive enough close to these calcium ion channels, they
allow the calcium ions to flow in. And the calcium ions flow in and
they bond to those special proteins near the synaptic
membrane or the presynaptic membrane right there. These are calcium ions. They bond to proteins that
were docking vesicles. Remember, vesicles were just
these membranes around neurotransmitters. When the calcium binds to those
proteins, it allows exocytosis to occur. It allows the membrane of the
vesicles to merge with the membrane of the actual
neuron and the contents get dumped out. This is all review from
the neuron videos. I explained it in much more
detail in those videos, but you have– all of these neurotransmitters get dumped out. And we were talking about the
synapse between a neuron and a muscle cell. The neurotransmitter
here is acetylcholine. But just like what would happen
at a dendrite, the acetylcholine binds to receptors
on the sarcolemma or the membrane of the muscle cell
and that opens sodium channels on the muscle cell. So the muscle cell also has a a
voltage gradient across its membrane, just like
a neuron does. So when this guy gets some
acetylcholene, it allows sodium to flow inside
the muscle cell. So you have a plus there and
that causes an action potential in the muscle cell. So then you have a little bit
of a positive charge. If it gets high enough to a
threshold level, it’ll trigger this voltage gated channel right
here, which will allow more sodium to flow in. So it’ll become a little
bit positive over here. Of course, it also has potassium
to reverse it. It’s just like what’s going
on in a neuron. So eventually this action
potential– you have a sodium channel over here. It gets a little bit positive. When it gets enough positive,
then it opens up and allows even more sodium to flow in. So you have this action
potential. and then that action potential–
so you have a sodium channel over here– it
goes down this T-tubule. So the information from the
neuron– you could imagine the action potential then turns into
kind of a chemical signal which triggers another
action potential that goes down the T-tubule. And this is the interesting
part– and actually this is an area of open research right
now and I’ll give you some leads if you want to read more
about this research– is that you have a protein complex that
essentially bridges the sarcoplasmic reticulum
to the T-tubule. And I’ll just draw it as
a big box right here. So you have this protein
complex right there. And I’ll actually show it–
people believe– I’ll sort some words out here. It involves the proteins
triadin, junctin, calsequestrin, and ryanodine. But they’re somehow involved in
a protein complex here that bridges between the T-tubule the
sarcoplasmic verticulum, but the big picture is what
happens when this action potential travels down here–
so we get positive enough right around here, this complex
of proteins triggers the release of calcium. And they think that the
ryanodine is actually the part that actually releases the
calcium, but we could just say that it– maybe it’s triggered
right here. When the action potential
travels down– let me switch to another color. I’m using this purple
too much. When the action potential gets
far enough– I’ll use red right here– when the action
potential gets far enough– so this environment gets a little
positive with all those sodium ions flowing in, this mystery
box– and you could do web searches for these proteins. People are still trying to
understand exactly how this mystery box works– it triggers
an opening for all of these calcium ions to escape
the sarcoplasmic reticulum. So then all these calcium ions
get dumped into the outside of the sarcoplasmic reticulum
into– just the inside of the cell, into the cytoplasm
of the cell. Now when that happens, what’s
doing to happen? Well, the high calcium
concentration, the calcium ions bond to the troponin, just
like what we said at the beginning of the video. The calcium ions bond to the
troponin, move the tropomyosin out of the way, and then the
myosin using ATP like we learned two videos ago can start
crawling up the actin– and at the same time, once the
signal disappears, this thing shuts down and then these
calcium ion pumps will reduce the calcium ion concentration
again. And then our contraction will
stop and the muscle will get relaxed again. So the whole big thing here is
that we have this container of calcium ions that, when the
muscles relax, is essentially taking the calcium ions out of
the inside of the cell so the muscle is relaxed so that you
can’t have your myosin climb up the actin. But then when it gets the
signal, it dumps it back in and then we actually have a
muscle contraction because the tropomyosin gets moved out of
the way by the troponin., So I don’t know.
That’s pretty fascinating. It’s actually even fascinating
that this is still not completely well understood. This is an active– if you want
to become a biological researcher, this could be an
interesting thing to try to understand. One, it’s interesting just from
a scientific point of view of how this actually
functions, but there’s actually– there’s maybe
potential diseases that are byproducts of malfunctioning
proteins right here. Maybe you can somehow make these
things perform better or worse, or who knows. So there actually are positive
impacts that you could have if you actually figured out what
exactly is going on here when the action potential
shows up to open up this calcium channel. So now we have the
big picture. We know how a motor neuron can
stimulate a contraction of a cell by allowing the
sarcoplasmic reticulum to allow calcium ions to travel
across this membrane in the cytoplasm of the cell. And I was doing a little bit of
reading before this video. These pumps are very
efficient. So once the signal goes away and
this door is closed right here, this this sarcoplasmic
reticulum can get back the ion concentration in about
30 milliseconds. So that’s why we’re so good at
stopping contractions, why I can punch and then pull back my
arm and then have it relax all within split-seconds
because we can stop the contraction in 30 milliseconds,
which is less than 1/30 of a second. So anyway, I’ll see in the next
video, where we’ll study the actual anatomy of
a muscle cell in a little bit more detail.

85 thoughts on “Role of the sarcoplasmic reticulum in muscle cells | NCLEX-RN | Khan Academy

  1. excellent. now if you are so inclined, time for some genetics and microbiology, and organic chemistry 🙁

    these videos are great for review though an excellent complimentary source for the curriculum. i will probably be using the calculus videos next semester for a refresher and physics as well to keep my edge. thanks again splendid job as always.

  2. Yeah this is skeletal muscle, people sometimes get confused.. yet, just remember smooth muscle and striated muscle (Skeletal muscle and Cardiac muscle)! 😀

  3. this is amazing…nothing in my textbook or on the internet explained what exactly the sacroplasmic reticulum is for. Beautiful explanation, you just helped me get 20 points on my final! 🙂

  4. You have just saved me from a cell bio teacher with a thick German accent and no understanding of how to explain concepts or teach. Kudos to you, my fine fellow.

  5. For those curious:

    The "mystery box" is now understood to be a co-op of two proteins. The 1st, bound to the t-tubule, is called a "DHP-receptor". It is a modified version of a Ca2+ voltage gated channel, altered to serve as a volt-meter. Ryanodine, the 2nd protein, is embedded in the SR. As an action potential moves into the t-tubule, charged amino acids in the DHP receptor signal the ryanodine receptor, itself changing shape to allow Ca2+ ions to flow into the cytosol, then to the troponin.

  6. @hould6611 Could you please make it more clear for me.. It might not get more simple than this but could you please try? I have exams in 3 weeks so it would be perfect if I add something that I didnt hear from the lectures.. I just lost it a bit after the second protein.. The second protein is replacing what??? Thank you for your help!:)

  7. Wow. Great explanation. They say the mark of great intelligence is the ability to explain highly complex subject matter in a very simple, concise, and easily relatable manner. You sir, are an intelligent man.

  8. I read my books and its all just word floating round my head! Then I watch these vids and they all settle in place! Its like I can actually here them clicking in to place!ha Thanks so much you're doing a great job!

  9. Uh, I am taking a 200 level university course in physiology and this video seems pretty accurate and thorough according to that. Just sayin. This guys knows what he is talking about.

  10. i was watching this in the living room. There was kind of an argument going on. When you raised your voice when you said sarcoplasmic reticulum it suddenly got quiet in the room. :] It was a really funny moment

  11. There is a really great article by Philip M Hopkins called "Skeletal Muscle Physiology" that explains your mystery box very well.

  12. Hiya. Love this. My school friend's entire body grew fairly quickly as though he had been injecting steroids. Found out this man wasn't. The guy earned 33 pounds of muscle mass. I've routinely fought to increase muscle mass. My friend made use of the Muscle Building Bible (search it)

    I'm going to take a crack at it.

  13. Is that…is that "gym douchebag" style advertising spam? Only here cause the word muscle is in the title? I find this amusing!

  14. You explain things very well. I remember watching organic chemistry videos and was like this guy sounds familiar. You must know everything… I'm doing phys now…

  15. Hiya, have you heard about Max Muscle Method? (search for it on google) You will learn about the serious crimes we commit against ourselves. With Max Muscle Method, you will discover how to build muscle quickly.

  16. Thanks for the video clip. Youtube is fantastic for this type of thing.My homeboy was previously bullied. He said he was planning to get bigger. I laughed… But then out of the blue he packed on 40 pounds of complete lean muscle mass. He used the Muscle Building Bible (look for it in Google). No one dares to bully the man anymore. 🙂 I registered earlier this week. Plus this guys emails are fucking excellent!

  17. Hello everyone. Amazing clip.

    My dad was once a fatty. He went from 293 lbs of pure fat to 215lbs of complete muscle. I came to be amazed. I just subscribed myself as I wanna strengthen. He made use of the Muscle Building Bible (Search on Google)…

  18. Yo yo… Very good vid. My uncle was once obese. He went from 284lbs of fat to 216 lbs of real muscle. Shit's extreme! I just joined personally as I would like to greatly improve my entire body. He made use of the Muscle Building Bible (Look in Google)…

  19. I learnt more in this series about the neuromuscular system in 30 minutes than my 4 hour graduate level exercise physiology class. You are a genius Sal.

  20. Can I just say that I actually love you. You are genuinely saving lives with these videos that are so fantastically explained and illustrated. Thank you.

  21. Hey guys. Wonderful film. My pal was formerly a flabby. He went from 285 lbs of fat into 207 lbs of full-strength muscle mass. Everybody was in shock. I just registered personally as I wanna strengthen. He used the Muscle Building Bible (Search on Google)…

  22. I'm a first year Medical student. I just want to thank you for these great videos that make the difficult things you read on the slide shows from school, seem so easy…

  23. Great lecture Khan! Just a small correction. When referring to the "mystery box," you mentioned the possibility that "ryanodine" may be involved. I believe you meant to say ryanodine receptor. The ryanodine receptor is a selective calcium channel which operates via a process known as calcium induced calcium release. Ryanodine, on the other hand, is a plank alkaloid and a high affinity binding partner of the ryanodine receptor and is able to inhibit or activate this calcium channel (depending on the concentration). Ryanodine receptors are prevalent throughout skeletal and cardiac muscle and are crucial in the physiologic processes you're describing here. Great work!

  24. You are a life saver. I'm trying to squeeze 8 months worth of study into 3 days before my exam (bad idea kids never miss your classes/ lectures) and your videos are literally helping me power through my syllabus.

  25. now that we have a better understanding of the mystery box can someone do a follow-up video explaining it?

  26. What happens to the calcium after its pumped back into the SR? Is it re used over and over again for muscle contraction? How many times can the same calcium ions be reused? Are they eventually metabolized and replaced by more calcium ions from the extracellular fluid???

  27. If anyone is interested, the "mystery protein" has been identified as DHPR.

    What actually happens is the action potential from the sodium ions in the t-tubule causes the DHPR to physically pull on the ryanodine receptor which is what causes the calcium ions to leak out of the sarcoplasmic reticulum.

  28. Sitting in Starbucks studying for my Animal physiology test on Monday and I go “ahhhhh!” Really loudly because I finally get how the Ca2+ gets into SR

  29. You're the man! BTW As stated in the comments below learned that ryanodine communicates with DHP (Dihydropyridine ) receptors (the big question mark in the video). Easy for me to say 8 years later

  30. I also LOVE YOU !!!! What knowledge you – you're so comfortable explaining the most complex things in the most clearest way 🙂 – you make biology and biochem good fun

  31. great video but I think its time now to update the information of the mystery box is actually called triad complex composed of dihydropyridine receptors (DHPR) voltage sensing channels of the T-tubule and the sarcoplasmic reticulum calcium channels ryanodine receptors (RyR)

  32. Mystery box is already solved =) membrane depolarization induces conformational changes in the voltage sensitive DHPR and it's mechanically coupled ryanodine receptor ===) Ca2+ release from the sarcoplasmic reticulum into the cytoplasm ( FIRST AID usmle 446 page )

  33. My physiology professor spent two weeks on muscle contraction. I never understood it, and two ~10 minute videos made it SO much clearer. Thank you.

  34. Super helpful! You should remake this video with the new findings about these structures and processes (e.g. ryanodine as a receptor to stimulate calcium ion release).

Leave a Reply

Your email address will not be published. Required fields are marked *